Nonparametric Estimation of Genewise Variance for Microarray Data1 By
نویسندگان
چکیده
Estimation of genewise variance arises from two important applications in microarray data analysis: selecting significantly differentially expressed genes and validation tests for normalization of microarray data. We approach the problem by introducing a two-way nonparametric model, which is an extension of the famous Neyman–Scott model and is applicable beyond microarray data. The problem itself poses interesting challenges because the number of nuisance parameters is proportional to the sample size and it is not obvious how the variance function can be estimated when measurements are correlated. In such a high-dimensional nonparametric problem, we proposed two novel nonparametric estimators for genewise variance function and semiparametric estimators for measurement correlation, via solving a system of nonlinear equations. Their asymptotic normality is established. The finite sample property is demonstrated by simulation studies. The estimators also improve the power of the tests for detecting statistically differentially expressed genes. The methodology is illustrated by the data from microarray quality control (MAQC) project.
منابع مشابه
Nonparametric Estimation of Genewise Variance for Microarray Data.
Estimation of genewise variance arises from two important applications in microarray data analysis: selecting significantly differentially expressed genes and validation tests for normalization of microarray data. We approach the problem by introducing a two-way nonparametric model, which is an extension of the famous Neyman-Scott model and is applicable beyond microarray data. The problem itse...
متن کاملNonparametric variance estimation in the analysis of microarray data: a measurement error approach.
This article investigates the effects of measurement error on the estimation of nonparametric variance functions. We show that either ignoring measurement error or direct application of the simulation extrapolation, SIMEX, method leads to inconsistent estimators. Nevertheless, the direct SIMEX method can reduce bias relative to a naive estimator. We further propose a permutation SIMEX method wh...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملNonparametric Estimation of Scalar Diffusions Based on Low Frequency Data1 by Emmanuel Gobet,
We study the problem of estimating the coefficients of a diffusion (Xt , t ≥ 0); the estimation is based on discrete data Xn ,n = 0,1, . . . ,N . The sampling frequency −1 is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill...
متن کاملNearest shrunken centroids via alternative genewise shrinkages
Nearest shrunken centroids (NSC) is a popular classification method for microarray data. NSC calculates centroids for each class and "shrinks" the centroids toward 0 using soft thresholding. Future observations are then assigned to the class with the minimum distance between the observation and the (shrunken) centroid. Under certain conditions the soft shrinkage used by NSC is equivalent to a L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010